Job Title: Senior DataLake Implementation Specialist
Experience: 10–12+ Years
Location: Bangalore
Type: Full-time / Contract
Notice Period: Immediate
 
Job Summary:
We are looking for a highly experienced and sharp DataLake Implementation Specialist to lead and execute scalable data lake projects using technologies such as Apache Hudi, Hive, Python, Spark, Flink, and cloud-native tools on AWS or Azure. The ideal candidate must have deep expertise in designing and optimizing modern data lake architectures with strong programming skills and data engineering capabilities.
 
Key Responsibilities:
  • Design, develop, and implement robust data lake architectures on cloud platforms (AWS/Azure).
  • Implement streaming and batch data pipelines using Apache Hudi, Apache Hive, and cloud-native services like AWS GlueAzure Data Lake, etc.
  • Architect and optimize ingestion, compaction, partitioning, and indexing strategies in Apache Hudi.
  • Develop scalable data transformation and ETL frameworks using PythonSpark, and Flink.
  • Work closely with DataOps/DevOps to build CI/CD pipelines and monitoring tools for data lake platforms.
  • Ensure data governance, schema evolution handling, lineage tracking, and compliance.
  • Collaborate with analytics and BI teams to deliver clean, reliable, and timely datasets.
  • Troubleshoot performance bottlenecks in big data processing workloads and pipelines.
 
Must-Have Skills:
  • 4+ years hands-on experience in Data Lake and Data Warehousing solutions
  • 3+ years experience with Apache Hudi, including insert/upsert/delete workflows, clustering, and compaction strategies
  • Strong hands-on experience in AWS GlueAWS Lake Formation, or Azure Data Lake / Synapse
  • 6+ years of coding experience in Python, especially in data processing
  • 2+ years working experience in Apache Flink and/or Apache Spark
  • Sound knowledge of HiveParquet/ORC formats, and DeltaLake vs Hudi vs Iceberg
  • Strong understanding of schema evolutiondata versioning, and ACID guarantees in data lakes
 
Nice to Have:
  • Experience with Apache IcebergDelta Lake
  • Familiarity with KinesisKafka, or any streaming platform
  • Exposure to dbtAirflow, or Dagster
  • Experience in data catalogingdata governance tools, and column-level lineage tracking
 
Education & Certifications:
  • Bachelor’s or Master’s degree in Computer Science, Information Technology, or related field
  • Relevant certifications in AWS Big DataAzure Data Engineering, or Databricks